Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury.
نویسندگان
چکیده
Our recent terminal experiments revealed that administration of a single train of repetitive spinal electromagnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal circuitry following lateral hemisection spinal cord injury. In the current study, we have examined effects of repetitive sEMS applied as a single train and chronically (5 wk, every other day) following thoracic T10 contusion. Chronic studies involved examination of systematic sEMS administration alone and combined with exercise training and transgene delivery of neurotrophin [adeno-associated virus 10-neurotrophin 3 (AAV10-NT3)]. Electrophysiological intracellular/extracellular recordings, immunohistochemistry, behavioral testing, and anatomical tracing were performed to assess effects of treatments. We found that administration of a single sEMS train induced transient facilitation of transmission through preserved lateral white matter to motoneurons and hindlimb muscles in chronically contused rats with effects lasting for at least 2 h. These physiological changes associated with increased immunoreactivity of GluR1 and GluR2/3 glutamate receptors in lumbar neurons. Systematic administration of sEMS alone for 5 wk, however, was unable to induce cumulative improvements of transmission in spinomuscular circuitry or improve impaired motor function following thoracic contusion. Encouragingly, chronic administration of sEMS, followed by exercise training (running in an exercise ball and swimming), induced the following: 1) sustained strengthening of transmission to lumbar motoneurons and hindlimb muscles, 2) better retrograde transport of anatomical tracer, and 3) improved locomotor function. Greatest improvements were seen in the group that received exercise combined with sEMS and AAV-NT3.
منابع مشابه
Spinal electro - magnetic stimulation combined with transgene delivery of neurotrophin NT - 3 and 1 exercise : novel combination therapy for spinal contusion injury
21 Our recent terminal experiments revealed that administration of a single train of repetitive 22 spinal electro-magnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal 23 circuitry following lateral hemisection SCI. In the current study, we have examined effects of 24 repetitive sEMS applied as a single train and chronically (5 weeks every other day) following 25 thoracic T...
متن کاملImplantation of neurotrophin gene modified bone derived mesenchymal stem cells to repair spinal cord complete transection injury in adult rats
Recovery from spinal cord injury (SCI) after mesenchymal stem cells (MSCs) implantation is minimal due to the limited capacity for the reduction in the cystic cavitation, the axonal regeneration, and neural plasticity in the spinal cord. We combined MSC implantation with neurotrophin gene therapy in an attempt to enhance regeneration and functional recovery after thoracic spinal cord complete i...
متن کاملPreliminary study of a genetically engineered spinal cord implant on urinary bladder after experimental spinal cord injury in rats.
The objective of this study was to determine the effect of neurotrophin-secreting Schwann cell implants on the urinary bladder after spinal cord contusion. One hour after severe spinal cord contusion at the T8 to T11 level, carbon filaments containing nonsecreting Schwann cells, brain-derived neurotrophic factor (BDNF)-secreting Schwann cells, neurotrophin-3 (NT-3)-secreting Schwann cells, or S...
متن کاملLocal Delivery of Neurotrophin-3 and Anti-NogoA Promotes Repair After Spinal Cord Injury.
Tissue and functional repair after spinal cord injury (SCI) continue to elude researchers. Neurotrophin-3 (NT-3) and anti-NogoA have been shown to promote axonal regeneration in animal models of SCI; however, localized and sustained delivery to the central nervous system (CNS) remains a critical challenge for these and other macromolecular therapeutics. An injectable drug delivery system (DDS) ...
متن کاملDorsal column sensory axons lack TrkC and are not rescued by local neurotrophin-3 infusions following spinal cord contusion in adult rats.
By reducing the progressive degeneration and disconnection of axons following spinal cord injury the functional outcome should improve. After direct transection of dorsal column sensory axons, neurotrophin-3 (NT-3) treatment can reduce degeneration and promote regeneration of the proximal stumps. Here, we tested in adult rats whether NT-3 infusion at the site of a moderate T9 spinal cord contus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 114 5 شماره
صفحات -
تاریخ انتشار 2015